Jumat, 24 April 2020

MESIN KONVERSI ENERGI

Mesin Konversi Energi 

       Energi adalah kemampuan untuk melakukan usaha. Energi bersifat abstrak yang sukar dibuktikan tetapi dapat dirasakan adanya. Menurut hukum Termodinamika Pertama, energi bersifat kekal. Energi tidak dapat diciptakan dan tidak dapat dimusnakan, tetapi dapat berubah bentuk (konversi) dari bentuk energi yang satu ke bentuk energi yang lain.Sebagai contoh pada proses pembakaran pada mesin mobil/motor (sistem motor pembakaran dalam), bensin satu liter dikonversi menjadi kerja yang berhasil guna tinggi, yakni menjadi energi gerak/mekanik pada mobil/motor,sehingga dapat memindahkan manusia/barang dari suatu tempat ke tempat lain. Dalam hal ini bensin satu liter memiliki energi dalam yang siap dirubah menjadi kerja yang berguna. Macam-Macam Energi

 a. Energi Mekanik Energi meknik merupakan energi gerak, misal turbin air akan mengubah energi potensial menjadi energi mekanik untuk memutar generator listrik. 

b. Energi Potensial Merupakan energi karena posisinya di tempat yang tinggi. Contohnya air waduk di pegunungan dapat dikonversi menjadi energi mekanik untuk memutar turbin, selanjutnya dikonversi lagi menjadi energi listrik 

c. Energi Listrik Energi Listrik adalah energi yang berkaitan dengan arus elektron,dinyatakan dalam watt-jam atau kilo watt-jam. Arus listrik akan mengalir bila penghantar listrik dilewatkan pada medan magnet. Bentuk transisinya adalah aliran elektron melalui konduktor jenis tertentu. Energi listrik dapat disimpan sebagai energi medan elektrostatis yang merupakan energi yang berkaitan dengan medan listrik yang dihasilkan oleh terakumulasinya muatan elektron pada pelat-pelat kapasitor. 

d. Energi Elektromagnetik Energi elektromagnetik merupakan bentuk energi yang berkaitan dengan radiasi elektromagnetik. Energi radiasi dinyatakan dalam satuan energi yang sangat kecil, yakni elektron volt (eV) atau mega elektron volt(MeV), yang juga digunakan dalam evaluasi energi nuklir. 

e. Energi Kimia Energi kimia merupakan energi yang keluar sebagai hasil interaksi elektrondi mana dua atau lebih atom/molekul berkombinasi sehingga menghasilkan senyawa kimia yang stabil. Energi kimia hanya dapat terjadi dalam bentuk energi tersimpan. Bila energi dilepas dalam suatu reaksi maka reaksinya disebut reaksi eksotermis yang dinyatakan dalam kJ,Btu, atau kkal. Bila dalam reaksi kimia energinya terserap maka disebut dengan reaksi endodermis. Sumber energi bahan bakar yang sangat penting bagi manusia adalah reaksi kimia eksotermis yang pada umumnya disebut reaksi pembakaran. Reaksi pembakaran melibatkan oksidasi daribahan bakar fosil 

f. Energi Nuklir Energi nuklir adalah energi dalam bentuk energi tersimpan yang dapat dilepas akibat interaksi partikel dengan atau di dalam inti atom. Energi ini dilepas sebagai hasil usaha partikel-partikel untuk memperoleh kondisi yang lebih stabil. Satuan yang digunakan adalah juta elektron reaksi. Pada reaksi nuklir dapat terjadi peluruhan radioaktif, fisi, dan fusi. 

g. Energi Termal Energi termal merupakan bentuk energi dasar di mana dalam kata lain adalah semua energi yang dapat dikonversikan secara penuh menjadi energi panas. Sebaliknya, pengonversian dari energi termal ke energi lain dibatasi oleh hukum Termodinamika II. Bentuk energi transisi dan energi termal adalah energi panas, dapat pula dalam bentuk energi tersimpan sebagai kalor ”laten” atau kalor ”sensible” yang berupa entalpi 

h. Energi Angin Energi angin merupakan energi yang tidak akan habis, material utama berupa angin dengan kecepatan tertentu yang mengenai turbin angin sehingga menjadi gerak mekanik dan listrik. Klasifikasi Mesin-Mesin Konversi Energi Mesin-mesin konversi energi secara sederhana dapat diklasifikasikan menjadi dua, yaitu mesin konversi energi konvensional, dan mesin energi konversinonkonvensional. Mesin konversi energi konvensional umumnya menggunakan sumber energi konvensional yang tidak terbarui, kecuali turbin hidropower, dan umumnya dapat diklasifikasikan menjadi motor pembakaran dalam, motor pembakaran luar, mesin-mesin fluida, serta mesin pendingin dan pengkondisian udara. Mesin konversi energi non-konvensial umumya menggunakan energi yang dapat diperbarui, kecuali mesin energi konvensi berbahan dasar nuklir. Motor Pembakaran Dalam Motor pembakaran dalam dikembangkan oleh Motos Otto, atau Beaude Roches merupakan mesin pengonvesi energi tak langsung, yaitudari energi bahan bakar menjadi energi panas dan kemudian baru menjadi energi mekanis. Energi kimia bahan bakar tidak dikonversikan langsung menjadi energi mekanis. Bahan bakar standar motor bensin adalah iso oktan (C8H18. Efisiensi pengonversian energinya berkisar 30% (ηt± 30%). Hal ini karena rugi-rugi: 50% rugi panas, gesek/mekanis, dan pembakaran tak sempurna. 
         Sistem siklus kerja motor bensin dibedakan atas motor bensin dua langkah (two stroke), dan empat langkah (four stroke). Motor bakar merupakan salah satu jenis mesin penggerak yang banyak dipakai dengan memanfaatkan energi kalor dari proses pembakaran menjadi energi mekanik. Motor bakar merupakan salah satu jenis mesin kalor yang proses pembakarannya terjadi dalam motor bakar itu sendiri sehingga gas pembakaran yang terjadi sekaligus sebagai fluida kerjanya. Mesin yang bekerja dengan cara seperti tersebut disebut mesin pembakaran dalam. 
       Adapun mesin kalor yang cara memperoleh energi dengan proses pembakaran di luar disebut mesin pembakaran luar. Sebagai contoh mesin uap, dimana energi kalor diperoleh dari pembakaran luar, kemudian dipindahkan ke fluida kerja melalui dinding pemisah. Keuntungan dari mesin pembakaran dalam dibandingkan dengan mesin pembakaran luar adalah kontruksinya lebih sederhana, tidak memerlukan fluida kerja yang banyak dan efesiensi totalnya lebih tinggi. Sedangkan mesin pembakaran luar keuntungannya adalah bahan bakar yang digunakan lebih beragam, mulai dari bahan bakar padat sampai bahan-bakar gas, sehingga mesin pembakaran luar banyak dipakai untuk keluaran daya yang besar dengan banan bakar murah. 
         Pembangkit tenaga listrik banyak menggunakan mesin uap. Untuk kendaran transpot mesin uap tidak banyak dipakai dengan pertimbangan kontruksinya yang besar dan memerlukan fluida kerja yang banyak. 1. Sejarah Motor Bakar Sejarah motor bakar mengalami perkembangan yang menggembirakan sejak tahun 1864. Pada tahun tersebut Lenoir mengembangkan mesin pembakaran dalam tanpa proses kompresi. Campuran bahan bakar dihisap masuk silinder dan dinyalakan sehingga tekanan naik, selanjutnya gas pembakaran berekspansi yang mendorong piston, langkah berikutnya gas pembakaran dibuang. Piston kembali bergerak menghisap campuran bahan bakar udara dengan
menggunakan energi yang tersimpan dalam roda gila. Mesin Lenoir pada tahun 1865 diproduksi sebanyak 500 buah dengan daya 1,5 hp pada putaran 100 rpm. Mesin berikutnya yang lebih efesien dari mesin Lenoir adalah Otto langen engine. 
      Mesin ini terdiri dari piston yang tidak dihubungkan dengan poros engkol, tetapi piston bergerak bebas secara vertikal pada proses ledakan dan tenaga. Setelah itu, secara gravitasi piston bergerak turun dan terhubung dengan gigi pinion diteruskan ke roda gila. Selanjutnya energi yang tersimpan dalam roda gila digunakan oleh piston untuk energi langkah isap. Pada langkah isap campuran bahan bakar udara masuk silider untuk pembakaran

      Motor bensin 2 langkah adalah motor bensin dimana untuk melakukan suatu kerja diperlukan 2 langkah gerakan piston atau 1 kali putaran poros engkol. Siklus kerja 

Siklus motor bensin 4 langkah Motor bensin empat langkah adalah motor yang pada setiap empat langkah torak/torak (dua putaran engkol) menghasilkan satu tenaga kerja (satu langkah kerja). Berikut ini disajikan cara kerja dari motor bensin 4 langkah:

1. Langkah isap Pada saat langkah isap, katup masuk terbuka dan katup buang tertutup. Torak bergerak dari TMA (titik mati atas) dan berakhir di TMB (titik mati bawah). Gerakan torak mengakibatkan pembesaran volume silinder, maka menyebabkan kevakuman yang terjadi didalam silinder dan akan mengakibatkan masuknya campuran bahan bakar dan udara ke dalam silinder.

2. Langkah Kompresi Pada langkah kompresi. Kedua katup tertutup dan campuran di dalam silinder dikompresikan sehingga tekanan dan temperatur naik. Sesaat sebelum akhir langkah kompresi, busi meletikkan bunga api untuk membakar gas akibatnya tekanan gas dalam silinder naik dengan cepat.

3. Langkah usaha/kerja Pada langkah usaha atau kerja, torak bergerak dari titik mati atas menuju titik mati bawah. Kedua katup dalam posisi tertutup. Gas bertekanan tinggi hasil dari terjadinya proses pembakaran menekan torak bergerak turun dan memaksa engkol berputar. Oleh karena itu maka langkah ini disebut langkah usaha atau langkah kerja.

4. Langkah buang Langkah terakhir dari siklus 4 langkah adalah langkah pembuangan, terjadi ketika torak bergerak dari TMB ke TMA, katup buang terbuka dan katup masuk tertutup. Gas sisa pembakaran akan terdorong torak bergerak keluar. Bila torak mencapai titik mati atas, maka mulailah siklus baru lagi yang dimulai dengan langkah pemasukan atau pengisapan. Gambar selengkapnya dari siklus kerja motor 4 langkah bisa dilihat di gambar dibawah ini 

       Diagram PV motor bensin 4 langkah Proses termodinamika dan kimia yang terjadi di dalam motor bakar torak amat kompleks untuk dianalisis menurut teori. Untuk memudahkan analisis tersebut kita perlu membayangkan suatu keadaan yang ideal. Makin ideal suatu keadaan makin mudah dianalisis, akan tetapi dengan sendirinya makin jauh menyimpang dari keadaan yang sebenarnya. Pada umumnya untuk menganalisa motor bakar dipergunakan siklus udara sebagai siklus ideal. Siklus ideal volume kostan ini adalah siklus untuk mesin otto. Siklus volume konstan sering disebut dengan siklus ledakan explostion cycle) karena secara teoritis proses pembakaran terjadi sangat cepat dan menyebabkan peningkatan tekanan yang tiba-tiba. Penyalaan untuk proses pembakaran dibantu dengan loncatan bunga api. Nikolaus August Otto menggunakan siklus ini untuk membuat mesin sehingga siklus ini sering disebut dengan siklus otto. Proses sebenarnya amat komplek, sehingga analisa dilakukan pada kondisi ideal dengan fluida kerja udara. Idealisasi proses tersebut sebagai berikut : a. Fluida kerja dari awal proses hingga akhir proses. b. Panas jenis dianggap konstan meskipun terjadi perubahan temperatur pada udara. c. Proses kompresi dan ekspansi berlangsung secara adiabatik, tidak terjadi perpindahan panas antara gas dan dinding silinder. d. Sifat-sifat kimia fluida kerja tidak berubah selama siklus berlangsung. e. Motor 2 (dua) langkah mempunyai siklus termodinamika yang sama dengan motor 4 (empat) langkah. Siklus udara dengan Volume Tetap Proses ini sering kita sebut proses OTTO yaitu proses yang terdapat pada motor bensin 4 langkah, siklus ini dapar digambarkan dengan grafik P VS V (P versus V)

Pada waktu torak bergerak ke kanan, udara bercampur bahan bakar masuk ke dalam silinder. Karena torak dalam keadaan bergerak, maka tekanannya turun sehingga lebih kecil daripada tekanan udara luar, begitu juga suhunya. Garis langkah isap dapat dilihat pada diagram indikator pada gambar. Penurunan tekanan ini tergantung pada kecepatan aliran. 
       Pada motor yang tidak menggunakan Supercharger tekanan terletak diantara 0,85 – 0,9, terhadap tekanan udara luar(kevakuman). 1 – 2 :Langkah kompresi. Kompresinya teoritis berjalan adiabatis. 2 – 3 :Langkah pembakaran. Pembakarannya terjadi pada volume tetap, sehingga suhu naik. 3 – 4 :Langkah pemuaian, sering disebut langkah kerja. Pemuaian ini juga berjalan adiabatis. Pada langkah ini, suhu turun dari T3 menjadi T4 yang selanjutnya gas tersebut dibuang sebagai gas buang dengan suhu T4. Pembuangan terjadi pada langkah 4 – 0. Karena udara yang masuk mempunyai suhu T1 dan volume V1 maka seolah-olah terjadi pendinginan pada volume tetap dari T4 – T1. T1 = Suhu udara luar dalam °C V1 – V2 = Volume udara yang diisap tiap putaran �� �� = � ��� ������� ������������ �������� Tekanan yang tertinggi pada proses ini = P3, sedangkan suhu yang tertinggi = T3. Kedua harga ini erat sekali hubungannya dengan bahan dari silinder dan pengisap. Untuk mencapai rendemen teoritis (thermis), maka kerja teoritis diagram indikator ini disederhanakan menjadi: �� = ������ ����� ���� ���������� �� = ������ ����� ���� ����������� �� = �. ��(�� − ��) �� = �. ��(�� − ��) � = ����� ��� ���� ������������ (��) �� = ����� ����� ���� ������ �����

      Siklus tekanan tetap Proses ini terjadi pada motor diésel 4 langkah dengan putaran rendah. Pada motor yang diisap bukan campuran udara dengan bahan bakar melainkan hanya udara. Sesaat sebelum akhir kompresi disemprotkan bahan bakar dalam bentuk kabut ke dalam silinder. Bahan bakar ini terbakar karena suhu dari udara yang tinggi. Suhu yang tinggi dari udara diperoleh karena adanya kompresi adiabatis. Ketika bahan bakar disemprotkan. Memperoleh suhu yang tinggi dari titik nyala bahan bakar tersebut. Supaya bahan bakar dan udara dapat bercampur secara homogen, maka gerakan udara di dalam silinder harus merupakan aliran turbulen. Pada motor diésel harga perbandingan kompresi lebih besar daripada motor bensin. Pembakarannya terjadi pada tekanan tetap. 0 – 1 : Pengisapan 1 – 2 : Pemampatan adiabatis 2 – 3 : Pembakaran pada tekanan tetap 3 – 4 : Langkah kerja 4 – 0 : Langkah pembuangan. (Keterangan mengenai langkah ini, sama seperti pada motor bensin) P2 + P3 : Tekanan tinggi T3 : Suhu tinggi Panas masuk terjadi pada perubahan dari T2-T3 Harga ௏య ௏మ = � disebut pengisian. Suhu gas buang = T4, sedang suhu udara yang masuk = T1 = suhu udara luar



  

PEMBENTUKAN DENGAN MESIN BUBUT


PEMBENTUKAN LOGAM


PENGECORAN LOGAM


PENERUS DAYA (2)

2. RANTAI

       Pada kegiatan belajar sebelumnya mengenai sabuk, slip dapat saja terjadi. Untuk menghindari terjadinya slip maka digunakan rantai baja. Rantai yang terdiri dari sejumlah link kaku yang berengsel dan di sambung oleh pin untuk memberikan fleksibilitas yang diperlukan. Rantai digunakan untuk mentransmisikan daya dimana jarak kedua poros besar dan dikehendaki tidak terjadi slip. Dibandingkan dengan transmisi roda gigi, rantai jauh lebih murah akan tetapi brisik serta kapasitas daya dan kecepatanya lebih kecil .

Rantai sebagian besar digunakan untuk mengirimkan gerakan dan daya dari satu poros ke poros yang lain, seperti ketika jarak pusat antara poros pendek seperti pada sepeda, sepeda motor, mesin pertanian, konveyor, dll dan juga rantai mungkin dapat juga digunakan untuk jarak pusat yang panjang (sampai 8 meter).

Keuntungan dan Kerugian dibandingkan dengan transmisi sabuk Keuntungan

1. Selama beroperasi tidak terjadi slip sehingga diperoleh rasio kecepatan yang sempurna.
2. Karena rantai terbuat dari logam, maka ruang yang dibutuhkan lebih kecil dari pada sabuk, dan dapat menghasilkan transmisi yang besar.
3. Memberikan efisiensi transmisi tinggi (sampai 98 persen).
4. Dapat dioperasikan pada suhu cukup tinggi maupun pada kondisi atmosfer. Kekurangan

1. Biaya produksi rantai relatif tinggi.
2. Dibutuhkan pemeliharaan rantai dengan cermat dan akurat, terutama pelumasan dan penyesuaian pada saat kendur.
3. Rantai memiliki kecepatan fluktuasi terutama saat terlalu meregang.
 4. Suara dan getaran karena tumbukan antara rantai dan kaki gigi sproket

Jenis – jenis rantai yaitu :

a. Rantai Rol (roller chain) Rantai rol sangat luas pemakaianya karena harganya yang relative murah dan perawatan dan pemasanganya mudah. Contoh : pemakaian pada sprocket sepeda motor dan sepeda, dan untuk menggerakan sproket pada industri. Untuk bahan pena, bus dan rol digunakan baja karbon atau baja khrom dengan pengerasan kulit. Rantai dengan rangkaian tunggal adalah yang paling banyak dipakai. Rangkaian banyak, seperti dua atau tiga rangkaian dipergunakan untuk transmisi beban berat.
b. Rantai Gigi (silent chain) Rantai jenis ini mempunyai keunggulan pada tingkat kecepatan dan kapasitas daya yang ditransmisikan lebih besar, serta tingkat kebisingan lebih kecil, akan tetapi harganya lebih mahal. Pemakaian rantai ini masih terbatas karena harganya yang mahal dan orang lebih suka menggunakan transmisi roda gigi. Menentukan ukuran dan kekuatan Perhitungan kekuatan pada pemindahan daya dengan rantai dan roda rantai, terutama ditekankan pada kekuatan gigi-gigi roda rantai, keeping-keping penghubung, pada keeping rantai dan pen (terutama rantai gall) terjadi tekanan bidang dan tegangan geser yang besar, sehingga perhitungan lebih ditekankan pada kedua macam tegangan tersebut.

Roda Rantai 
1. Macam-macam roda rantai, terdapat tiga macam roda rantai, yaitu: a. Roda rantai tunggal, b. Roda rantai ganda, dan c. Roda rantai jajar Ukuran dan kekuatan roda rantai Untuk menentukan ukuran-ukuran seperti diameter terkecil, kisar, jumlah gigi, tinggi gigi, dan lain-lain. Dapat kita hitung menurut rumus: �଴ = � sin ( 180° � ) − �ଵ d0 = diameter terkecil p = kisar z = jumlah gigi d1 = diameter bush silinder dan tinggi gigi berkisar antara ½ sampai 1 x d1 ℎ = ൬1 2 + 1൰ �ଵ h = tinggi gigi d1 = diameter bush silinder

 Putaran roda rantai Kecepatan rantai Jika roda rantai pada poros penggerak berputar dengan kecepatan konstan, kecepatan jalan dari rantai tidak tetap, tetapi bergerak dari harga mínimum kepada maksimum, variasi kecepatan rantai (dari maksimum ke minimum) dapat dikurangi dengan penambahan jumlah gigi dari roda rantai. Sebagai suatu perbandingan, roda rantai dengan 11 gigi mempunyai variasi kecepatan sekitar 4%, untuk jumlah gigi 17 ≈ 1,6%, 24 gigi ≈ 1%. Sebagai batasan, biasanya diambil jumlah gigi minimum 17 gigi dan jika diambil lebih banyak dari 24 gigi akan menghasilkan gerakan yang lebih rata

3. Roda gigi Sistem transmisi roda gigi banyak digunakan pada berbagai mesin. Sebagai contoh di bidang otomotif, sistem transmisi yang digunakan adalah transmisi roda gigi. Sistem transmisi roda gigi digunakan karena :
•efisiensinya yang tinggi,
 • kehandalan dalam operasional,
• tidak mudah rusak,
•dapat meneruskan daya dan putaran yang tinggi.
• kemudahan dalam pengoperasian dan perawatan.

Roda gigi merupakan elemen mesin yang digunakan untuk memindahkan daya dan putaran dari satu poros ke poros lain tanpa terjadi slip. Prinsip dasar dari sistem transmisi roda gigi merupakan pengembangan dari prinsip transmisi roda gesek. Gerakan dan daya yang ditransmisikan melalui roda gigi, secara kinematis ekuivalen dengan yang ditransmisikan melalui roda gesek atau cakram. Dari uraian di atas secara garis besar dasar sistem transmisi roda gigi adalah dua buah silinder yang menggelinding (berputar) tanpa slip, kecepatan linier sama ( v1 = v2), kecepatan sudut tidak sama (ω1 ≠ ω2). 
Sistem transmisi roda gigi mempunyai banyak kelebihan dibandingkan dengan sistem transmisi yang lain, antara lain : 
a) Meneruskan rasio kecepatan yang sama dan tepat. Kontak antar gigi terjadi dengan sudut kontak yang sama, sehingga rasio kecepatan tidak mengalami perubahan selama roda gigi tersebut bekerja. b) Tidak terjadi slip. Pada berbagai mesin, seringkali slip tidak boleh terjadi karena akan mengurangi efisiensi mesin secara keseluruhan. Pada sistem transmisi roda gigi slip tidak akan terjadi karena kontak antar gigi terjadi dengan pas. 
c) Dapat digunakan untuk meneruskan daya yang besar. Sistem transmisi roda gigi dapat meneruskan daya yang besar karena berbentuk ramping dan kekuatan yang tinggi. 
d) Dapat digunakan untuk meneruskan putaran yang tinggi. Putaran yag dihasilkan oleh system transmisi roda gigi dapat dari putaran rendah sampai putaran tinggi. 
e) Perbandingan transmisi roda gigi dapat didesain dari sesuai kebutuhan. 
f) Dapat digunakan untuk jarak sumbu poros yang dekat. Jarak antar poros dalam sistem transmisi roda gigi dapat didesain sesuai kebutuhan dan space yang tersedia. Gear box yang dihasilkan dari desain sistem transmisi roda gigi dapat berukuran kecil sampai besar. 
g) Memiliki efisiensi yang tinggi. Efesiensi yang tinggi dari sistem transmisi roda gigi karena tidak terjadi slip akibat kontak gigi. Putaran dan torsi yang diteruskan sama sesuai dengan perbandingan transmisi yang diinginkan. 
h) Memiliki daya tahan dan kerja yang baik. Transmisi roda gigi biasanya didesain untuk berbagai kondisi operasi dengan mempertimbangkan beban statis gigi, beban dinamis, beban keausan dan tegangan lentur yang terjadi akibat kerja yang dilayani. Hal ini menghasilkan sistem transmisi roda gigi mempunyai daya tahan yang tinggi terhadap fluktuasi beban yang diterimanya.
 i) Memiliki bentuk yang ringkas. Keunggulan transmisi roda gigi salah satunya karena bentuknya yang sangat ringkas dan ramping. Hal ini dapat diperoleh karena bentuk roda gigi sangat sederhana, kecil dan ramping sehingga dapat dikemas dalam gear box yang ringkas.
 j) Dapat digunakan untuk meneruskan putaran dari poros sejajar, bersilangan dan poros dengan sudut tertentu. Sistem transmisi roda gigi dapat menghasilkan putaran output dengan berbagai posisi, baik sejajar, bersilangan maupun membentuk sudut tertentu. Posisi output yang bervariasi sangat menguntungkan untuk mendesain mesin sesuai dengan kebutuhan. 
Klasifikasi Roda Gigi Jenis roda gigi dapat diklasifikasikan menjadi beberapa kelompok sebagai berikut: 
a. Berdasarkan bentuk gigi dan sistem kerjanya adalah sebagai berikut :
 • Roda gigi lurus (spur gear). Roda gigi lurus terjadi karena bentuk gigi dari roda gigi tersebut berbentuk lurus. Gigi-gigi didesain sedemikian rupa sehingga menyerupai beam (batang) lurus. Roda gigi lurus dalam operasionalnya menggunakan poros yang sejajar.
 • Roda gigi miring (helical gear). Roda gigi miring mempunyai bentuk gigi miring denga sudut kemiringan tertentu. Keuntungannya adalah kontak gigi terjadi sepanjang kemiringan gigi, sehingga mampu menghasilkan putaran ang tinggi. 
• Roda gigi kerucut (bevel gear). Roda gigi kerucut dihasilkan dari gabungan gigi-gigi yang mengikuti bentuk kerucut dengan sudut tertentu. Roda gigi kerucut mampu melayani kerja mesin dengan poros yang membentuk sudut tertentu, sebagai contoh poros input dengan posisi horisontal dan output diinginkan dalam posisi vertikal. 
• Roda gigi cacing (worm gear). Roda gigi cacing merupakan roda gigi gabungan antara roda gigi biasa dengan batang gigi atau batang berulir. Keunggulan roda gigi ini terletak pada perbandingan transmisi yang dapat didesain sangat tinggi sama 1 : 100. Roda gigi cacing mempunyai poros yang saling bersilangan. 
• Roda gigi planiter (planetary gear). Roda gigi planiter merupakan roda gigi yang terdiri dari beberapa roda gigi yang dirangkai menjadi satu kesatuan. Roda gigi tersebut meliputi roda gigi mahatahari sebagai pusat, roda gigi planet, roda gigi gelang dan lengan pembawa planet. Keunggulan roda gigi planeter terletak pada beberapa output yang dapat dihasilkan dengan hanya satu input. 

b. Berdasarkan posisi sumbu dari poros. 
• poros parallel, seperti pada roda gigi lurus dan miring.
• poros bersilangan, seperti pada roda gigi cacing. 
• poros membentuk sudut tertentu, seperti pada roda gigi kerucut. Kedua poros yang paralel dan co-planer dihubungkan oleh roda gigi, 

Roda-roda gigi tersebut disebut sebagai spur gears atau roda gigi lurus, dan penempatannya disebut spur gearing. Roda-roda gigi ini memiliki gigi yang paralel terhadap sumbunya. Roda gigi lain yang termasuk dalam spur gearing adalah helical gearing, dengan giginya miring terhadap sumbu roda gigi. Roda gigi single dan double helical dihubungkan dengan poros yang saling paralel

 b. Fungsi utama dari roda gigi double helical adalah untuk menyeimbangkan gaya aksial yang terjadi pada roda gigi single helical, ketika meneruskan beban. Roda gigi double helical dapat juga disebut sebagai roda gigi herringbone. 
    Dua buah poros yang membentuk sudut tertentu, dihubungkan oleh roda gigi seperti ditunjukkan pada Gambar. Roda gigi ini disebut roda gigi kerucut atau bevel gears dan penempatannya yang disebut bevel gearing. Roda gigi kerucut, seperti juga roda gigi lurus, dapat memiliki gigi yang miring terhadap permukaan kerucut, yang disebut sebagai helical bevel gears. Dua buah poros yang tidak paralel dan tidak berpotongan, serta tidak co-planar, dihubungkan oleh roda gigi 
    Roda gigi ini disebut sebagai skew bevel gears atau spiral gears, dan penempatannya yang disebut sebagai skew bevel gearing atau spiral gearing. Jenis penempatan roda gigi ini juga memiliki garis kontak, yaitu putaran pada sumbu yang menghasilkan kedua permukaan pitch, yang disebut sebagai hyperboloids. Roda gigi dengan poros saling bersilangan Roda gigi tersebut dikenal dengan roda gigi cacing atau Worm Gear. 
Roda Gigi Cacing Berdasarkan kecepatan peripheral dari roda gigi.
 • Kecepatan rendah ≤ 3 m/s 
• Kecepatan sedang (3 – 15) m/s 
• Kecepatan tinggi ≥ 15 m/s 

Berdasarkan jenis atau bentuk hubungan pasangan gigi. 
• external gear = roda gigi luar. 
• internal gear = roda gigi dalam. 
• rack & pinion = roda gigi berbentuk batang = roda gigi dengan jari-jari tak terhingga. Pada external gearing, roda gigi dari kedua poros berhubungan secara eksternal satu sama lain, Roda yang besar disebut sebagai gear dan roda yang lebih kecil disebut pinion. Pada external gearing, gerakan dari kedua roda gigi selalu berlawanan. 
     Pada internal gearing, roda gigi dari kedua poros berhubungan secara internal satu sama lain, Roda yang besar disebut sebagai annular wheel dan roda yang lebih kecil disebut pinion. Ada kalanya, roda gigi dari sebuah poros berhubungan secara eksternal dengan roda gigi lain dalam suatu garis lurus, Jenis roda gigi ini disebut sebagai rack and pinion. Roda gigi yang datar atau lurus disebut rack dan roda gigi lingkar disebut sebagai pinion. Dengan adanya mekanisme rack and pinion, maka gerakan linear dapat dikonversi menjadi gerakan berputar dan juga sebaliknya.

Tata Nama Dari Roda Gigi 

Istilah-istilah dari roda gigi 
a) Lingkaran pitch (pitch circle) adalah suatu lingkaran imajiner (teoretis) yang menggelinding tanpa slip dan menjadi dasar perhitungan roda gigi.
 b) Diameter lingkaran pitch (pitch circle diameter) adalah diameter dari lingkaran pitch. Ukuran dari roda gigi biasanya ditentukan dari diameter lingkaran pitch. Diameter ini juga disebut sebagai diameter pitch. Notasi umum yang digunakan adalah : d0 
c) Pitch (jarak bagi lingkar) adalah jarak sepanjang lingkaran jarak bagi antara dua profil gigi yang berdekatan. Notasi umum yang digunakan adalah : t 
d) Sudut tekan (pressure angle) adalah sudut kontak normal antara dua buah gigi dari dua roda gigi yang saling bertemu. Notasi umum yang digunakan adalah : α . 
e) Addendum (a) adalah jarak radial gigi dari lingkaran pitch ke bagian atas/kepala gigi. 
f) Dedendum (d) adalah jarak radial gigi dari lingkaran pitch ke bagian bawah/kaki gigi. 
g) Lingkaran addendum adalah lingkaran yang digambar melalui bagian atas dari gigi atau lingkaran kepala gigi. 
h) Lingkaran dedendum adalah lingkaran yang digambar melalui bagian bawah dari gigi atau dikenal dengan lingkaran kaki gigi. 
i) Circular pitch adalah jarak yang diukur pada sekeliling dari lingkaran pitch, pada satu titik dari satu gigi, dengan titik yang berhubungan pada gigi selanjutnya. Biasanya dinotasikan dengan tc. Secara matematis dituliskan sebagai:
 j) Diametral pitch adalah rasio dari jumlah gigi dengan diameter lingkaran pitch, dalam millimeter. Biasanya dinotasikan dengan td. Secara matematis dituliskan menjadi: 
k) Modul gigi. Adalah perbandingan antara diameter lingkaran pitch dalam millimeter dengan jumlah gigi. Biasanya dinotasikan dengan m. Secara matematis dituliskan l) 
l) Clearance adalah jarak radial antara bagian atas dari gigi dengan bagian bawah dari gigi, pada keadaan berpasangan. Sebuah lingkaran yang melalui bagian atas dari roda gigi yang berpasangan disebut sebagai lingkaran clearance. 
m) Kedalaman total adalah jarak radial antara lingkaran addendum dengan dedendum dari roda gigi. Kedalaman total ini sama dengan jumlah dari addendum dengan dedendum. 
n) Kedalaman kerja adalah jarak radial antara lingkaran addendum dengan lingkaran clearance. Kedalaman kerja ini sama dengan jumlah dari addendum dari kedua roda gigi yang berpasangan.
 o) Ketebalan gigi adalah lebar dari gigi yang diukur sepanjang lingkaran pitch. 
p) Ruang gigi adalah lebar dari ruang yang terdapat diantara dua gigi yang berdekatan, yang diukur di sepanjang lingkaran pitch. 
q) Backlash adalah perbedaan antara ruang gigi dengan ketebalan gigi, yang juga diukur di sepanjang lingkaran pitch. 
r) Muka dari gigi adalah permukaan dari gigi di atas permukaan pitch. 
s) Top land. Adalah permukaan dari bagian atas gigi. 
t) Flank (panggul) dari gigi adalah permukaan dari gigi dibawah permukaan pitch. 
u) Lebar muka gigi adalah lebar dari gigi yang diukur secara paralel dengan sumbu roda gigi. 
v) Profil adalah lingkaran yang terbentuk akibat muka dengan panggul dari gigi.
 w) Radius fillet adalah radius yang menghubungkan lingkaran akar gigi dengan profil gigi. 
x) Jalur kontak adalah jalur yang dibentuk oleh titik kontak dari dua gigi, dari awal sampai dengan akhir hubungan gigi (engagement).
 y) Panjang jalur kontak adalah panjang dari cut-off normal yang umum dari lingkaran addendum dari gear dan pinion. 
z) Busur kontak. Adalah jalur yang dibentuk oleh titik pada lingkaran pitch, dari awal sampai dengan akhir dari hubungan pasangan roda gigi. Busur kontak tersebut terdiri dari dua bagian, yaitu : busur pencapaian (arc of approach) yaitu porsi dari jalur kontak dari awal sampai dengan hubungan pada titik pitch dan busur diam (arc of recess) yaitu porsi dari jalur kontak dari akhir sampai dengan hubungan pada sepasang gigi. Rasio dari panjang busur kontak dengan circular pitch dikenal sebagai rasio kontak, seperti jumlah pasangan gigi yang kontak. 

PENERUS DAYA (1)

1. SABUK (BELT)

      Sabuk adalah elemen mesin yang menghubungkan dua buah puli yang digunakan untuk mentransmisikan daya. Sabuk digunakan dengan pertimbangan jarak antar poros yang jauh, dan biasanya digunakan untuk daya yang tidak terlalu besar. Kelebihan transmisi sabuk jika dibandingkan dengan transmisi rantai dan roda gigi adalah :
 1. Harganya murah 
2. Perwatan mudah 
3. Tidak berisik

 kekuranganya : 

1. Umurnya pendek/mudah aus 
2. Terjadi sliding / tidak akurat
3. Efisiensi rendah 
4. kapasitas daya kecil 

JENIS-JENIS BELT :
 1. Transmisi sabuk datar (flat belt 
Digunakan di industri dengan daya yang cukup besar, jarak antar puli biasanya sampai 10 m.  

2. Transmisi sabuk V (V-belt)
 Sabuk-V terbuat dari karet dan mempunyai penampang trapesium. Digunakan pada mesin-mesin industri dimana jarak antar puli dekat. Jenis-jenis V belt yang sering ditemui di bidang otomotifSabuk V terbuat dari karet dan mempunyai penampang trapesium, tenunan tetorom atau semacamnya dipergunakan sebagai inti sabuk dan membawa tarikan yang besar. Sabuk V dibelitkan di keliling alur puli yang berbentuk V pula. Gaya gesekan juga akan bertambah karena pengaruh bentuk baji, yang akan menghasilkan transmisi daya yang besar pada tegangan yang relatif rendah. Keuntungan dari sabuk V dibandingkan sabuk datar adalah : 

1. Drive V-belt memberikan kekompakan karena jarak antar pusat-pusat puli kecil.
 2. Slip antara sabuk diabaikan.
 3. Lifetime lebih lama, 3 sampai 5 tahun. 
4. Dapat dengan mudah di bongkar pasang.. 
5. Pengoperasian sabuk dan pulley halus. 
6. Rasio kecepatan tinggi. 
7. Tindakan wedging dari sabuk di alur memberikan nilai tinggi untuk membatasi rasio * ketegangan. Oleh karena itu daya yang ditransmisikan oleh V-sabuk lebih dari belts datar untuk ketegangan yang sama koefisien gesekan, busur dari kontak dan diijinkan di sabuk.
 8. V-belt dapat dioperasikan di kedua arah, dengan sisi ketat sabuk di bagian atas atau bawah. Garis tengah bisa horizontal, vertikal atau miring. 

3. Transmisi sabuk bundar (circular belt) Paling jarang digunakan, biasanya dipakai untuk mentransmisikan daya yang kecil, dan jarak antar puli sampai 5 meter. Belt biasanya dibuat dari kulit, karet, kapas dan paduanya. 
TRANSMISI SABUK GILIR Transmisi sabuk gilir bekerja atas dasar gesekan belitan dan mempunyai beberapa keuntungan karena murah harganya, sederhana konstruksinya, dan mudah untuk mendapatkan perbandingan putaran yang diinginkan. Transmisi tersebut telah banyak digunakan dalam semua bidang industri, seperti mesinmesin pabrik, otomobil, mesin pertanian, alat kedokteran, mesin kantor, alat-alat listrik, dll. Namun transmisi sabuk (flat) tersebut mempunyai kekurangan dibandingkan dengan transmisi rantai dan roda gigi, yaitu terjadinya slip antara sabuk dan puli, sehingga transmisi ini tidak dapat dipakai bilamana dikehendaki putaran tetap atau perbandingan transmisi yang tetap. Melihat kekurangan diatas maka dikembangkan transmisi sabuk gilir “timing belt”. Untuk perhitungan gaya dan tegangan yang bekerja dan prinsip kerjanya sama dengan transmisi sabuk flat dan transmisi sabuk V.
Sabuk gilir dibuat dari karet neoprene atau plastic poliuretan sebagai bahan cetak, dengan inti dari serat gelas atau kawat baja, serta gigi-gigi yang dicetak secara telti di permukaan sebelah dalam dari sabuk. Karena sabuk gilir dapat melakukan transmisi mengait seperti roda gigi atau rantai, maka gerakan dengan perbandingan putaran yang tetap dapat diperoleh. Konstruksi sabuk gilir ini banyak ditemui pada sisitem penggerak poros kam pada motor. 

1. Susunan Belt dalam Sistem Puli : 

a. Sistem terbuka yaitu susunan puli dimana putaran puli yang satu dengan yang lain berputar dengan arah yang sama. Pemindahan dengan sabuk terbuka dipakai untuk pemindahan daya antara 2 buah poros sejajar atau lebih dan berputar searah. Karena pada sabuk terbuka mudah terjadi slip, maka pemindahan sistem ini dimaksudkan juga untuk pemindahan-pemindahan daya dimana tidak diperlukan perbandingan transmisi secara tepat. 

b. Sistem tertutup atau sabuk silang yaitu susunan puli dimana putaran puli yang satu dengan yang lain berlawanan arah. Pemindahan daya dengan sabuk silang digunakan untuk poros-poros sejajar yang berputar berlawanan arah. Pada bagian persilangan terjadi gesekan dan getaran antar bagian ban yang berjalan dengan arah yang berlawanan.  
Untuk mengurangi getaran yang telalu besar, kedua poros ditempatkan pada jarak A maksimum (jarak A minimum > 20 b, dimana b = lebar ban) dan berputar dengan kecepatan rendah (v ≈ 15 m/s). Slip pada sabuk silang lebih kecil, dibandingkan dengan pada sabuk terbuka, karena bidang singgung dengan puli lebih besar. Rasio Kecepatan Rasio kecepatan adalah rasio antara kecepatan driver dan driven, dinyatakan secara matematis : x Panjang sabuk yang melewati driver dalam satu menit = S d1N1 x Demikian pula, panjang sabuk yang melewati driven, dalam satu menit = S d2N2 Karena panjang sabuk yang melewati driver dalam satu menit adalah sama dengan panjang sabuk yang melewati driven dalam satu menit, sehingga: S d1N1 = S d2N2 Dimana : d1 = Diameter driver, d2 = Diameter driven, N1 = Kecepatan driver (r.p.m), N2 = Kecepatan driven/pengikut(r.p.m), sehingga kecepatan rasio adalah : Ketika ketebalan sabuk dianggap (t), maka rasio kecepatan, 

SAMBUNGAN ULIR

SAMBUNGAN ULIR

        Sambungan ulir adalah sambungan yang menggunakan kontruksi ulir untuk mengikat dua atau lebih komponen permesinan. Sambungan Ulir merupakan jenis dari sambungan semi permanent (dapat dibongkar pasang). Sambungan ulir terdiri dari 2 (dua) bagian, yaitu baut dimana memiliki ulir di bagian luar dan Mur dimana memiliki ulir di bagian dalam. Sambungan Ulir digunakan pada sambungan yang tidak permanen. 

1. FUNGSI SAMBUNGAN ULIR Dilihat dari kontruksi yang memiliki ulir (yang dapat di bongkar pasang) sambungan ulir memiliki fungsi teknis utama, yaitu: x Digunakan pada bagian mesin yang memerlukan sambungan dan pelepasan tanpa merusak bagian mesin. x Untuk memegang dan penyesuaian dalam perakitan atau perawatan. 

KEUNTUNGAN DAN KERUGAIAN SAMBUNGAN ULIR Ditinjau dari sisi teknik sambungan ulir memiliki keuntungan dan kerugian sebagai berikut;
Keuntungan Sambungan Ulir 
1. Mempunyai reliabilitas (kehandalan) tinggi dalam operasi. 
2. Sesuai untuk perakitan dan pelepasan komponen. 
3. Suatu lingkup yang luas dari sambungan baut diperlukan untuk beberapa kondisi operasi. 
4. Lebih murah untuk diproduksi dan lebih efisien. Kerugian Sambungan Ulir x Konsentrasi tegangan pada bagian ulir yg tidak mampu menahan berbagai kondisi beban Istilah-istilah dalam ulir terlihat pada gambar di bawah ini : 
        Major diameter Diameter terbesar pada bagian ulir luar atau bagian ulir dalam dari sebuah sekrup. Sekrup ditentukan oleh diameter ini, juga disebut diameter luar atau diameter nominal. Minor diameter Bagian terkecil dari bagian ulir dalam atau bagian ulir luar, disebut juga sebagai core atau diameter root. Pitch diameter Disebut juga diameter efektif, merupakan bagian yang berhubungan antara baut dan mur. 
       Pitch Jarak dari satu ujung ulir ke ujung ulir berikutnya. Juga dapat diartikan jarak yang ditempuh ulir dalam satu kali putaran. x Crest adalah permukaan atas ulir x Depth of thread adalah jarak tegak lurus antara permukaan luar dan dalam dari ulir. x Flank adalah permukaan ulir x Angle of thread adalah sudut yang terbentuk dari ulir x Slope Ini adalah setengah pitch 
2. JENIS-JENIS DAN BENTUK ULIR 
a). British standard whitworth (BSW) threat Mata Ulir berbentuk segitiga. Aplikasi : untuk menahan vibrasi, automobile 
b). British Association (BA) threat Mata Ulir berbentuk segitiga dengan puncak tumpul Aplikasi : Untuk mengulir pekerjaan yang presisi. 
c). American national standard thread. Standar nasional Amerika dimana memiliki puncak datar. Ulir ini digunakan untuk tujuan umum misalnya pada baut, mur, dan sekrup. 
d). Unified standard thread. Tiga negara yakni, Inggris, Kanada dan Amerika Serikat melakukan perjanjian untuk sistem ulir sekrup yang sama yaitu dengan sudut termasuk 60°, dalam rangka memfasilitasi pertukaran mesin. Ulir ini memiliki puncak dan akar yang bulat, seperti ditunjukkan pada Gambar. 
e). Square threat Mata Ulir berbentuk Segiempat. Aplikasi : power transmisi, machine tools, valves. f). Acme threat Mata Ulir berbentuk Trapesium Aplikasi : cutting lathe, brass valves. 
g). Knuckle threat Mata ulir berbentu bulat, merupakan modifikasi dari ulir persegi. Ulir ini digunakan untuk pekerjaan kasar, biasanya ditemukan di sambungan gerbong kereta api, dan botol kaca. 
h). Ulir Metrics Merupakan ulir standar India dan mirip dengan ulir BSW. Ini memiliki sudut 60 °. Profil dasar ulir ditunjukkan pada Gambar. Samping atas dan profil desain mur dan baut ditunjukkan pada

3. TIPE UMUM PENYAMBUNGAN ULIR 

1. Through bolt Merupakan jenis penyambungan yang digunakan untuk menyambung dua bagian atau lebih dengan cara dijepit menggunakan mur dan baut. Lubang aterial yang akan disambung harus sesuai dengan ukutan baut sehingga beban yang dapat ditahan oleh baut dapat maksimal. 
2. Tap Bolt Merupakan jenis penyambungan dua buah material atau lebih dimana salah satu ujung mur mengikat pada material dan ujung lainnya diikat dengan baut
3. Studs Merupakan jenis penyambungan dua buah material atau lebih dimana mur diikat langsung 

4. BENTUK KEPALA MUR/BAUT Macam-macam bentuk kepala mur dan baut

5. PENGUNCIAN MUR/BAUT Umumnya mur dan baut akan tetap kencang di bawah beban statis, tapi banyak ikatan mur dan baut menjadi longgar di bawah beban variabel atau ketika mesin mengalami getaran. Mengendurnya baut/mur ini sangat berbahaya dan harus dicegah. Untuk mencegah hal ini, sejumlah besar metode penguncian perangkat telah diterapkan, beberapa di antaranya adalah : 
1. Jam nut or lock nut. Perangkat penguncian yang paling umum adalah mengunci mur. Metode ini menggunakan dua buah mur dimana mur bagian atas adalah sebagai penguncinya. 
2. Castle nut. Mur berbentuk heksagonal dengan bagian atas berbentuk silinder yang memiliki slot,Pin melewati dua slot pada mur dan sebuah lubang pada baut, biasanya digunakan pada kondisi yang tiba-tiba mengalami guncangan dan getaran yang cukup besar seperti di industri otomotif. 
3. Sawn nut. Memiliki slot setengah mur, dimana mur diperkuat dengan sekrup kecil yang menghasilkan lebih banyak gesekan antara mur dan baut. Hal ini mencegah mengendurnya mur.
4. Locking with pin. Mur dapat dikunci dengan menggunakan pin atau pasak lancip melewati tengah mur 
(a). Tapi pin juga sering digunakan diatas dari mur, yaitu dimasukkan pada lubang baut, 
 5. Locking with plate. Mur bisa disesuaikan dan kemudian dikunci melalui interval sudut 30 ° dengan menggunakan plat. 
 6. Spring lock washer Mur dapat dikunci dengan menggunakan pegas cincin yang pipih, pegas dapat meningkatkan ketahanan sehingga mur tidak mudah untuk mengendur seperti
6. Perhitungan kekuatan ulir Perhitungan didasarkan pada kekuatan dan kemampuan ulir menahan suatu beban . Beban yang bekerja pada ulir dapat dibagi menjadi 2 macam, yaitu: x Pembebanan memanjang yang mengakibatkan terjadinya tegangan tarik pada baut (σt) x Pembebanan melintang yang mengakibatkan terjadinya tegangan geser pada baut (��) 
a. Pembebanan memanjang Pembebanan ini disebabkan oleh pemasangan baut dengan kunci, maka pada batang baut terjadi gaya memanjang sebesar F. Ini berarti bahwa pada baut terjadi pembebanan memanjang. Dan tempat terlemah adalah pada diameter inti D₁. Dengan demikian: F = A. �ത௧ . d₁ A = luas penampang d₁ d₁ = diameter inti baut F = beban F = గ ସ �₁² . �ത௧ . 4 F = π. d₁² . �ത௧ d₁² = ସி గ �ത௧ d₁ = ටସி
b. Pembebanan melintang Pembebanan ini terjadi bila kita menyambung dua belah plat dengan menggunakan baut, sedang pada pelat pelat tersebut bekerja gayagaya tarik kesamping. Bagian baut yang menerima tarikan paling besar adalah di tempat kedua plat tadi berhimpitan. Maka gaya F yang bekerja pada bagian baut tadi didasarkan atas geseran. Dalam hal ini berlaku rumus: F = n. గ ସ �² . �ௌ . dimana D = diameter luar baut, �ௌ = tegangan geser Seperti pada pembebanan memanjang maka besarnya diameter baut bisa dicari c. Rangkuman 6 Sambungan ulir adalah sambunga

SAMBUNGAN (2)

SAMBUNGAN TETAP

    1. Metode Penyambungan Las Proses pengelasan merupakan ikatan metalurgi antara bahan dasar yang dilas dengan elektroda las yang digunakan, melalui energi panas. Energi masukan panas ini bersumber dari beberapa alternatif diantaranya energi dari panas pembakaran gas, atau energi listrik. Panas yang ditimbulkan dari hasil proses pengelasan ini melebihi dari titik lebur bahan dasar dan elektroda yang di las. Kisaran temperatur yang dapat dicapai pada proses pengelasan ini mencapai 2000 sampai 3000 ºC. Pada temperatur ini daerah yang mengalami pengelasan melebur secara bersamaan menjadi suatu ikatan metalurgi logam lasan. Menurut Duetch Industrie Normen (DIN) las adalah ikatan metalurgi pada sambungan logam atau paduan logam yang dilaksanakan dalam keadaan lumer atau cair. Las merupakan sambungan setempat dan untuk mendapatkan keadaan lumer atau cair dipergunakan energi panas. Dari keterangan tersebut mengelas adalah menyatukan dua bagian logam atau lebih dengan mengadakan ikatan metalurgi dibawah pengaruh panas Keuntungan penggunaan las adalah : 
a). Konstruksi sambungan las mudah dilakukan. 
b). Waktu pengerjaan sambungan las relatif lebih cepat. 
c). Bahan lebih hemat.
 d). Konstruksi lebih ringan. 
e). Diperoleh bentuk sambungan yang lebih estetis (indah). 

Dari pengertian pengelasan secara umum diatas, maka cara pengelasan dibedakan menjadi beberapa macam, yakni : 
a). Las Tekan
(1). Las Resistansi Listrik 
(2). Las Tempa 
(3). Las Tekan yang lain 
 b). Las Cair 
(1). Las Gas 
(2). Las Cair Busur Listrik
 (a). Elektrode tak terumpan (Las TIG/Wolfram)
 (b). Elektrode Terumpan ƒ Las Busur pelindung Gas (Las MIG, Las CO2) ƒ Las Busur pelindung Fluks (elektrode terbungkus, elektrode Inti, elektrode rendam. ƒ Las Busur tanpa pelindung
 (c). Las Termit 
(d). Las Terak 
(e). Las Cair yang lain. 
(3). Pematrian 
(a). Patri Keras 
(b). Patri Lunak. 
       Pada topik bahasan ini yang diuraikan adalah las resistensi listrik, las gas acetylin dan las busur cahaya(las listrik) Kualitas Hasil Pengelasan Kualitas hasil pengelasan ditentukan oleh beberapa faktor antara lain :
 Teknik Pengelasan, bahan logam yang disambung, pengaruh panas serat jenis kampuh yang tepat. 
Teknik Pengelasan Faktor yang mempengaruhi kualitas las pada pengelasan ini adalah posisi mengelas, bentuk kampuh sambungan, kecepatan mengelas, brander las yang dipakai (untuk las gas), ukuran elektrode (las Busur). Bahan logam yang disambung Logam yang dipanasi sampai keadaan lumer/meleleh, maka pada proses pendinginan kembali akan terjadi perubahan sifat elastisitas logam, jika didinginkan secara perlahan logam akan menjadi kenyal dan jika didinginkan mendadak (dengan cepat) logam akan menjadi getas. Logam yang dipanasi tersebut akan mengalami perubahan komposisi kimia yang terkandung, trutama unsur karbon 

(C). Logam yang meleleh pada temperatur tinggi akan lebih banyak mengandung gas dari pada logam yang meleleh pada temperatur rendah, dan berakibat logam menjadi keropos. Untuk menghindari keropos tersebut maka sewaktu pengelasan perlu diberi bahan fluks (bahan pelindung). Perlu diketahui pula bahwa logam yang disambung diusahakan mempunyai titik lebur yang sama, sehingga proses penyambungannya menjadi sempurna. Pengaruh Panas Akibat pengaruh panas terjadi ekspansi dan pemuaian, sehingga menimbulkan tegangan-tegangan skunder yang tidak diinginkan. Pada proses pendinginan logam lasan yang meleleh/cair akan menjalani proses pembekuan. Selama pembekuan akan terjadi reaksi pemisahan (retak), terbentuk lobang halus, serta terbentuknya oksida-oksida. Reaksi pemisahan ada beberapa macam yakni : 
(a) pemisahan makro, yaitu : terjadinya perubahan pada garis lebur menuju ke garis sumbu las,
 (b) pemisahan gelombang, yaitu : terputusnya gelombang manik las, dan 
(c) pemisahan mikro, yaitu : terjadinya perubahan komponen dalam satu pijar atau bagian dari satu pilar.

 2. Las resistensi listrik Las resistensi listrik adalah suatu cara pengelasan dimana permukaan pelat yang disambung ditekankan satu sama lain dan pada saat yang sama arus listrik dialirkan sehingga permukaan tersebut menjadi panas dan mencair karenaadanya resistensi listrik. Dalam las ini terdapat dua kelompk sambungan yaitu sambungan tumpang dan sambungan tumpul. Sambungan tumpang biasanya digunakan untuk pelat-pelat tipis. Penyambungan pelat-pelat tipis sangat baik dikerjakan dengan las resistansi listrik. Proses penyambungan dengan las resistansi ini sangat sederhana, dimana sisi-sisi pelat yang akan disambung ditekan dengan dua elektroda dan pada saat yang sama arus listrik yang akan dialirkan pada daerah pelat yang akan ditekan melalui kedua elektroda. Akibat dari aliran arus listrik ini permukaan plat yang ditekan menjadi panas dan mencair, pencairan inilah yang menyebabkan terjadinya proses penyambungan. Penggunaan las resistansi listrik untuk penyambungan pelat-pelat tipis yang biasa digunakan terdiri dari 2 jenis yakni : 
a. Las Titik (spot welding) Proses pengelasan dengan las resistansi titik ini hasilnya pengelasan membentuk seperti titik. Skema pengelasan ini dapat dilihat pada gambar disamping. elektroda penekan terbuat batang tembaga yang dialiri arus listrik yakni, elektroda atas dan bawah. Elektroda sebelah bawah sebagai penumpu plat dalam keadaan diam dan elektroda atas bergerak menekan plat yang akan disambung. Agar pelat yang akan disambung tidak sampai bolong sewaktu proses terjadinya pencairan maka kedua ujung elektroda diberi air pendingin. Air pendingin ini dialirkan melalui selang-selang air secara terus menerus mendinginkan batang elektrodaTipe dari las resistansi titik ini bervariasi, salah satu tipenya dapat dilihat pada gambar disamping. pada las resistansi ini elektroda penekan sebelah atas digerakkan oleh tuas bawah. Tuas ini digerakkan oleh kaki dengan jalan menginjak / memberi tekanan sampai elektroda bagian atas menekan pelat yang ditumpu oleh elektroda bawah.
Tipe kedua dari las resistansi titk ini adalah penggerak elektroda tekan atas dilakukan dengan tangan. Tipe las resistansi ini dapat dengan mudah dipindah– pindahkan sesuai dengan penggunaannya. Untuk mengelas bagian-bagian sebelah dalam dari sebuah kostruksi sambungan pelat - pelat tipis ini, batang penyangga elektroda dapat diperpanjang dengan menyetel batang penyangga ini. Untuk mengelas bagianbagian sebelah dalam dari sebuah kostruksi sambungan pelat – pelat tipis ini, batang penyangga elektroda dapat diperpanjang dengan menyetel batang penyangga ini.
b. Las Resistansi Rol (Rolled Resistance Welding) Proses pengelasan resistansi tumpang ini dasarnya sama dengan las resistansi titik, tetapi dalam pengelasan tumpang ini kedua batang elektroda diganti dengan roda yang dapat berputar sesuai dengan alur/garis pengelasan yang dikehendaki. penampang cairan yang terjadi merupakan gabungan dari titiktitik yang menjadi satu. Pengelasan tumpang ini mempunyai kelebihan yakni dapat mengelas sepanjang garis yang dikehendaki. Untuk penekan roda elektroda sewaktu proses pengelasan berlangsung, tekanan roda memerlukan 1,5-2,0 lebih tinggi jika dibandingkan dengan resistansi titik.
Teknik dan prosedur pengelasan Teknik dan prosedur pengelasan reistansi titik dan tumpang ini pada dasarnya sama, hanya perbedaan terletak pada pengelasan sambungan yang terjadi antara titik dan bentuk garis. Hal-hal yang harus diperhatikan dalam melaksanakan pengelasan ini diantaranya : a. Pelat (benda kerja) yang akan dilas harus bersih dari oli, karat, cat dan sebagainya. b. Pada daerah pelat yang akan disambung sebaiknya diberi tanda titik atau garis. c. Sesuaikanlah aru pengelasan dengan ketebalan pelat yang akan disambung. d. Apabila kepala elektrtoda titk atau roda telah kotor, maka perlu dibersihkan dengan kikir atau amplas. Sebab apabila kepala elektroda ini kotor kemungkinan hasil penyambungan akan kurang melekat/jelek dan mudah lepas. 3. Las Karbit (las acetelyne) a). Pengertian Umum Las cair busur cair gas biasa disebut sesuai dengan bahan bakar gas yang dipakai misalnya las karbit karena menggunakan bahan bakar gas karbit, las elpiji karena gas elpiji yang dipakai dan seterusnya. Bahan bakar yang biasa dipakai pada pengelasan busur cair gas antara lain : gas acetelyne (karbir), gas propan, gas hydrogen, gas elpiji dll. Dalam materi ini kami membatasi materi dengan las karbit. Las karbit termasuk pengelasan leleh yaitu bagian yang akan dilas dipanasi pada lokasi sambungan hingga melampaui titik lebur dari kedua logam yang akan disambung. Dengan meleburnya kedua logam tersebut akan menyatu (tersambung) dengan atau tanpa adanya bahan tambah. Ikatan dengan prosedur tersebut biasa disebut sebagai ikatan Metalurgi. 

b). Peralatan dan Bahan Dalam pengelasan karbit kita memerlukan beberapa peralatan yang harus disiapkan agar proses pengelasan dapat kita lakukan dengan lancar dan hasil yang sempurna. Peralatan tersebut yakni :
 (1). Brander Listrik 
(2). Regulator
(3). Gas Asetelyne 
(4). Gas Oksigen 
(5). Katup pengaman 
(6). Kaca Mata Las 
(7). Tang Penjepit
(8). Sarung Tangan 
(9). Sumber Api 
(10). Palu Besi
 (11). Pembersih Brander 
(12). Kunci Tabung 
(13). Sikat Baja 

(1) Brander Las Brander las sebagai tempat bercampurnya gas karbit dengan oksigen (O2) untuk kemudian dinyalakan menjadi busur api yang nantinya digunakan untuk mengelas. Agar terjadi busur api yang sesuai dengan yang kita inginkan maka campuran gas karbit dan oksigen harus disesuaikan. Oleh karena itu pada bagian brander ini dilengkapi penyetel baik penyetel gas karbit maupun oksigen. Penyetel ini juga berfungsi untuk menyalakan dan mematikan busur api las karbit serta sebagai katup pengaman 
pertama bila terjadi aliran balik busur api. Pada ujung brander dilengkapi torekh. Torekh memiliki ukuran dari kecil sampai ukuran besar. Ukuran yang terdapat pada torekh menunjukkan ukuran tebal plat yang dapat disambung. Oleh karena itu torekh yang terdapat pada brander dapat dilepas dan diganti dengan ukuran yang sesuai dengan ukuran tebal plat yang akan disambung. 

(2). Regulator Seperti istilah pada umumnya regulator adalah alat pengukur atau pembatas ukuran. Pada las karbit ini regulator berfungsi untuk mengukur tekanan gas pada tabung dan membatasi tekanan gas yang keluar dari tabung, baik oksigen maupun karbit. Dalam 1 unit las karbit terdapat dua regulator yaitu regulator gas karbit dan regulator gas oksigen. Masing-masing regulator tersebut dilengkapi dengan dua buah manometer, manometer yang dekat dengan tabung sebagai alat pengukur tekanan gas dalam tabung dan manometer yang jauh dari tabung sebagai alat pengukur tekanan gas yang keluar dari tabung. 
     Perbedaan utama regulator asetilen dan oksigen adalah: Regulator asetilen x Garis pada regulator diberi warna merah x Ulir sambungan ke katup botol pada regulator adalah ulir kiri, mur memakai tirus. x Skala tekanan pada monometer tekanan rendah sampai 30 atau 50 psi (2,5 atau 4 kg/cm2 x Skala tekanan pada monometer tekanan tinggi sampai 400 atau 500 psi (25 atau 35 kg/cm2) x Ada tulisan Asetilen Regulator oksigen x Garis pada regulator diberi warna hijau/biru x Ulir sambungan ke katup botol pada regulator adalah ulir kanan, mur tanpa memakai chamfer. x Skala tekanan pada monometer tekanan rendah sampai 100 atau 250 psi (10 atau 40 kg/cm2) x Skala tekanan pada monometer tekanan tinggi sampai 3000 atau 5000 psi (250 atau 350 kg/cm2) x Ada tulisan oksigen. 

(3). Gas Karbit (A cetelyne) Gas karbit banyak digunakan dalam pengelasan busur cair gas daripada bahan bakar lainnya. Hal ini dikarenakan gas karbit memiliki banyak kelebihan diantaranya : (a).Gas karbit mudah dibuat dan tidak beracun. Jika dihisap untuk mengenali dari baunya tidak berbahaya. 

(b).Mempunyai sifat menyerap asam, sehingga dapat mengurangi oksidasi (memiliki daya reduksi). (c).Gas karbit (acetelyne) mempunyai nilai panas yang tinggi, karena suhu api yang dicapai pada gas karbit sangat tinggi. (d). Kecepatan pembakaran sangat tinggi. (e). Cocok untuk segala teknik pengelasan las gas Cara pembuatan gas karbit (acetelyne) ada tiga cara, yakni : sistem tetes, sistem cebur, dan sistem celup. Dari ketiga sistem tersebut yang dianggap paling efektif adalah sistem tetes. Reaksi kimia yang terjadi adalah : Ca.C2 + 2.H2O Ca(OH)2 + C2H2 + g Ca.C2 : Batu Karbid H2O : Air Ca(OH)2 :Kapur Terguyur C2H2 : Gas Karbid g : Panas Batu karbit 1 kg dapat menghasilkan gas karbit sekitar 250 – 300 kg gas. Pada tabung gas karbit (acetelyne) yang dipasarkan berisi 40 liter dengan tekanan 15 bar. Tabung gas karbit tidak boleh kena panas, karena jika terkena panas hingga suhu diatas 100ºC pada tekanan 2 bar dapat meledak. Batu karbit (Calsium carbide) dapat diperoleh dengan cara memanaskan atau melebur batu kapur (Ca) dan arang (C) dalam tungku listrik, reaksi kimiannya : Ca.O + 3C Ca.C2 + C.O2 
Pemakaian generator untuk memproduksi sendiri gas acetylene yang digunakan untuk mengelas memang lebih murah dibanding membeli gas acetylene yang sudah siap dipakai dan disimpan dalam tabung. Namun kekurangan memproduksi gas sendiri adalah tekanan gas yang kurang stabil. Oleh karena itu acetylene diproduksi di pabrik acetylene dan dikemas dalam tabung agar mudah dibawa kemana saja. Acetylene disimpan dalam tekanan tinggi sehingga dapat digunakan cukup lama dengan tekanan kerja yang relatif stabil. Untuk memenuhi peraturan keselamatan kerja dan memudahkan transportasi maka terdapat beberapa ketentuan tentang tabung acetylene.

 (4) Gas Oksigen Banyak sedikitnya gas oksigen berpengaruh pada suhu pembakaran. Kekurangan oksigen pada reaksi pembakaran dengan gas karbid akan berakibat suhu pembakaran rendah. Oksigen diperoleh dengan cara menguraiakan air atau menguapkan udara cair. Oksigen dipasaran biasa dijual dengan isi 40 liter dengan tekanan : 125 bar, 150 bar dan 200 bar pada suhu 15ºC. Pemakaian oksigen = volume tabung x penurunan tekanan, sedangkan pemakaian gas karbid = 0,9 x pemakaian oksigen. Tekanan kerja yang dipakai pada gas oksigen antara 3-4 bar dan untuk gas karbid pada pembakar besar 0,5 – 0,6 bar, sedang pada pembakar kecil berkisar 0,3 – 0,4 ba
(5) Katup Pengaman tekanan balik Perlu diperhatikan bahwa tekanan kerja untuk gas karbid harus lebih kecil dari 1,5 bar. Kandungan campuran gas karbid dengan oksigen sebesar 2,6% mudah meledak. Gas karbid lebih ringan daripada udara, oleh karenanya tidak boleh bocor. Selanjutnya logam yang bersentuhan dengan gas karbit, kandungan tembaga (Cu) tidak boleh lebih dari 70%. Keterangan: 
1. Sambungan slang 
2. Katup pengaman sulutan balik 
3. Perintang api (terbuat dari baja yang berpori-pori dan anti karat). 
4. Ruang antara 

5. Mur sambungan untuk sambungan pembakar Untuk menghindari terjadinya kecelakaan kerja (kebakaran) maka perlu dipasang katup pengaman untuk menghindari terjadinya tekanan dan pembakaran balik. Tekanan balik akan terjadi ketika tekanan udara luar lebih kecil dari tekanan dalam tabung, atau biasa terjadi ketika gas karbid dalam tabung sudah mulai habis. 

(6) Kacamata Las Kacamata berfungsi untuk melindungi mata dari kilauan busur api yang dihasilkan dari las karbid. Dengan demikian mata kita tidak cepat lelah dan pedih. Disamping itu dengan menggunakan kacamata kita dapat melihat dengan jelas logam yang dilas sudah mencapai titik lebur. Sehingga kita dapat dengan mudah menentukan kapan harus menyambung plat tersebut dan kapan pula kita menambahkan bahan tambah. 

(7) Tang Penjepit Tang penjepit berfungsi untuk memegang dan mengambil benda kerja. Lebih tepatnya sebagai pengganti jari-jari kita dalam memperlakukan benda kerja, karena selalu berhubungan dengan panas yang tinggi. 

(8) Sarung Tangan Dengan memakai sarung tangan kita akan lebih aman dari percikan-percikan api dan logan yang sedang dilas. Tentunya dengan rasa aman yang tinggi akan membantu kita dalam mencapai kesempurnaan kinerja, sehingga akan menghasilkan pengelasan yang baik. 

(9) Sumber Api Dalam menyalakan busur api kita memerlukan sumber api. Sumber api dapat berupa bara api, korek api dan lain-lain yang dapat menghasilkan percikan api. Perlu diketahui bahwa Gas karbit dapat menyala hanya dengan percikan api dan tidak harus api yang menyala.

 (10) Palu Besi Dalam menyambung dua buah permukaan plat diperlukan kerataan masingmasing plat. Sehingga proses penyambungan menjadi mudah. Kalau ada plat yang melengkung (benjol) sehingga terjadi celah yang lebar, maka cukup dipanasi pada bagian yang lengkung sampai menjadi bara dan kemudian dipukul dengan palu besi sampai permukaan plat tersebut rata. Dengan dipanasi terlebih dahulu akan mempermudah pembentukan plat tanpa merusak struktur plat tersebu. 

(11) Jarum Pembersih Brander Semakin lama kita melakukan pengelasan maka akan terjadi penyumbatan oleh arang pada torekh (ujung brander). Arang yang terbentuk disebabkan karena busur api yang terbentuk kelebihan gas karbid. Dengan menyiapkan jarum
pembersih brender yang bervariasi besarnya akan memperlancar prosesnya pengelasan. 

(12) Kunci Tabung Untuk membuka dan menutup tabung gas karbid dan gas oksigen kita memerlukan kunci tabung. Bentuk kunci tabung bermacam-macam, ada yang berbentuk palang dan ada yang berbentuk lurus. Besar penutup tabung juga bermacam-macam sehingga kita harus tepat dalam memilih kunci yang dipakai. Pemakaian yang tidak tepat akan menyebabkan kerusakan penutup tabung. Selama proses pengelasan hendaknya kunci tabung tetap menempel pada penutup tabung gas karbid. Dengan demikian ketika terjadi kebocoran gas bisa segera diatasi dengan menutup tabung secepatnya.

 (13) Sikat Baja Selesai proses pengelasan biasanya permukaan menjadi kotor oleh arang. Bersihkan dengan menggunakan sikat baja baru kemudian lapisi bidang pengelasan dengan cat atau minyak untuk menghindari terjadinya proses korosi. 

c). Jenis Nyala Api Las Acetelyne Dalam pengelasan menggunakan las karbid perlu diketahui juga jenis-jenis nyala api. Nyala api pada las karbid ada tiga macam yakni : 
nyala karburasi, oksidasi dan netral. 
Penggunaan nyala api disesuaikan dengan jenis logam yang akan dilas. Karena tidak semua jenis logam membutuhkan api yang sama : Nyala api karburasi adalah nyala api yang kelebihan gas karbid. Batas nyala ketiga kerucut yang terjadi tidak jelas. Penerapannya untuk pengelasan baja dengan karbon 
(C) tinggi, tuang kelabu, tuang temper dan untuk paduan logam ringan. Nyala api oksidasi adalah nyala api yang kelebihan oksigen. Pada nyala
api oksidasi terlihat dua kerucut, dan kerucut bagian dalam pendek berwarna birupucat sampai ungu. Pada nyala api oksidasiini biasanya terdengar suara berdesis. Nyala api oksidasi menimbulkan terak, gelembung gas (seperti busa sabun), kecuali pada logam kuningan. Kegunaannya untuk pengelasan kuningan dan pemotongan logam. Nyala api netral terbentuk karena campuran gas karbid dan oksigen yang seimbang. Nyala api netral terdapat dua kerucut dengan batas yang cukup jelas. Kerucut dalam berwarna putih bersinar dan kerucut luar berwarna biru bening. Pada nyala api netral terjadi reaksi pembakaran dua tingkat, yakni : 
d). Teknik Pengelasan Las karbid Dalam las karbid ada dua teknik pengelasan yang biasa dipaka yaitu dengan arah maju atau arah kebelakang. 

(1) Teknik Pengelasan Maju Pada pengelasan maju, bahan tambah mendahului brander. Pelelehan cenderung dibagian permukaan, sehingga dampak bakar (penetrasi) tidak mendalam. Adanya pemanasan pendahuluan mengakibatkan daerah panas menjadi lebih luas sehingga dapat menimbulkan tegangan panas yang tinggi.logam yang dilas selama proses pendinginan tidak terlindungi, sehingga jalur sambungan las yang sempurna sukar diperoleh. Keuntungan pada teknik pengelasan maju adalah penggunaan gas yang efisien karena adanya panas pendahuluan. Teknik pengelasan maju banyak digunakan untuk mengelas baja (bukan baja paduan) dengan tebal sama atau lebih kecil dari 3 mm, pipa baja dengan tebal lebih kecil 3,5 mm, besi tuang, dan logam non fero. Untuk logam dengan ukuran tebal, lebih besar atau sama dengan 1,5 mm, gerakan brander 
diayunkan/berayun. Sedangkan untuk tebal kurang dari 1,5 m 
gerakan ayunan semakin berkurang. 
a). Kawat bahan tambah mendahului, brander las mengikuti. 
b). Pelelehan bagian atas 
c). Pengelasan keseluruhan tanpa landasan. 

  (2) Teknik Pengelasan Mundur Teknik pengelasan kebelakang (mundur) brander las mendahului bahan tambah. Brander dituntun lurus bergerak mundur, sedangkan bahan tambah diselamkan dalam kampuh las sambil mengadukaduk (berbentuk spiral). Dampak bakar (penetrasi) yang terjadi cukup dalam dan logam lasan selama proses pendinginan mendapatkan perlindungan oleh gas karbid yang belum terbakar. Sehingga untuk mendapatkan hasil las yangs sempurna lebih mudah dibandingkan dengan arah pengelasan maju. Daerah panas lebih sempit sehingga penyusutan dan timbulnya tegangan panas relatif kecil. Pada cara pengelasan ini celah kampuh sambungan las dapat diperkecil, sehingga volume kampuh las menjadi kecil. Dengan demikian penggunaan bahan tambah dapat efisien. Kekurangan dalam pengelasan mundur ini adalah tidak adanya pemanasan pendahuluan sehingga penggunaan gas karbid menjadi lebih banyak. Baik teknik las maju maupun mundur jika posisi benda lasan mendatar tidak begitu menyulitkan. Pada teknik pengelasan arah mundur dengan posisi diatas kepala, pinggiran jalur sambungan harus dileleh lebih awal dengan baik dan kawat disodorkan benar- benar tembus keatas. 
     Las Busur Cahaya (Pengelasan Arc) 
a) Pengertian Umum Dikatakan las busur cahaya karena metode las ini menggunakan suhu busur cahaya listrik yang tinggi (4000ºC dan lebih) sebagai sumber panas. Untuk pengelasan dapat digunakan baik arus searah maupun arus bolak-balik. Kutup sumber yang satu dihubungkan dengan benda kerja, kutup yang lain dengan elektrode (lihat gambar dibawah ini). Dalam pembahasan las busur ini dibatasi dengan las busur dengan elektrode terbungkus, karena cara pengelasan ini banyak digunakanan. Pada pembentukan busur cahaya, elektrode keluar dari kutup negatif (katoda) dan mengalir dengan kecepatan tinggi ke kutup positif (anoda). 
       Dari katup positif mengalir partikel positif (ion positif) ke kutup negatif. Melalui proses ini, ruang udara diantara katoda dan anoda (benda kerja dan elektroda ) dibuat penghantar untuk arus listrik (diionisasikan) dan dimungkinkan pembentukan busur cahaya. Sebagai arah arus berlaku arah gerakan ion-ion positif. Pemindahan logam elektrode terjadi pada saat ujung elektrode mencair membentuk butir-butir logam diantarkan oleh busur listrik menuju kampuh sambungan yang dikehendaki dan menyatu dengan logam dasar yang mencair. 
     Apabila arus listrik yang mengalir besar, butir-butir logam akan menjadi halus. Tetapi jika arus listriknya terlalu besar butir-butir logam elektrode tersebut akan terbakar sehingga kampuh sambungan menjadi rapuh. Besar kecilnya butir-butir cairan logam elektroda juga dipengaruhi oleh komposisi bahan fluks yang dipakai pembungkus elektroda. Selama proses pengelasan fluks akan mencair membentuk terak dan menutup cairan logam lasan. Selama

proses pengelasan fluks yang tidak terbakar akan berubah menjadi gas. Terak dan gas yang terjadi selama proses pengelasan tersebut akan melindungi cairan logam lasan dari pengaruh udara luar (oksidasi) dan memantapkan busur listrik. Sehingga adanya fluks, pemindahan logam cair elektroda las menjadi lancar dan tenang. Mesin Las Listrik(Trafo Las) Mesin las busur dengan arus AC banyak digunakan. Dengan arus AC/bolak-balik maka tidak ada kutup positif dan kutup negatif. Mesin las arus AC menggunakan tegangan rendah dan arus tinggi, misalnya 30 V dengan 180 A. Jika mengambil dari jaringan listrik PLN, digunakan transformator untuk menurunkan tegangan. Pada mesin las arus AC, busur listrik yang ditimbulkan tidak tenang, sehingga untuk awal penyulutannya lebih sukar dari pada mesin las arus DC. Oleh karena itu dalam penggunaannya mesin las AC lebih cocok menggunakan elektrode terbungkus (dengan fluks) dan lebih ekonomis apabila digunakan untuk pengelasan plat tipis. 
A. Alat Bantu Las 

  1. Kabel Las Kabel las digunakan menyalurkan listrik dari trafo las dan dibuat dari tembaga/paduan tembaga yang dipilin (kabel serabut) supaya tidak kaku dan dibungkus dengan isolasi. Kabel las, ada 3 macam, yaitu: 

a. Kabel tenaga Kabel tenaga ialah kabel yang menghubungkan trafo las ke jaringan listrik.
b. Kabel elektroda Kabel elektroda ialah kabel yang menghubungkan trafo las dengan penjepit elektroda.
 c. Kabel massa Kabel massa ialah kabel yang menghubungkan trafo las dengan benda kerja. 

 2. Pemegang Elektroda Pemegang elektroda atau penjepit elektroda digunakan untuk menjepit elektroda pada waktu mengelas. Elektroda dijepit pada bagian pangkalnya, yang tidak bersalut. Bagianbagian tertentu dari pemegang elektroda harus diisolasi agar terhindar dari sengatan aliran listrik, seperti yang terlihat pada 

3. Palu Las Palu las atau palu terak berfungsi untuk membersihkan terak dan percikan las. Hatihatilah waktu membersihkan terak dan percikan las, pakailah kaca mata bening untuk melindungi mata.

4. Sikat Baja Sikat baja dipakai untuk membersihkan benda kerja yang akan dilas dan membersihkan terak las setelah lepas dari jalur las karena dipuku.

 5. Klem Massa Klem massa adalah alat untuk menghubungkan kabel masa dari trafo las dengan benda kerja. Sekalipun klem massa dan kabel massa sudah dibuat dari bahan yang dapat dialiri listrik dengan baik, benda kerja yang akan dijepit harus dibersihkan dari karat, cat dan minyak agar arus listrik tidak terganggu. 

6. Penjepit Penjepit digunakan untuk memegang benda kerja yang masih panas baik benda itu sedang dibersihkan atau dipindahkan. Disamping peralatan-peralatan di atas, masih banyak peralatan lain yang dipergunakan seperti : alat ukur, palu, penggores, pahat dingin, kikir, penitik pusat, dan lain sebagainya.

B. Alat Keselamatan Kerja Alat-alat keselamatan kerja yang harus digunakan pada waktu mengelas antara lain: 

1. Kedok Las Kedok las atau helm las digunakan untuk melindungi muka dari sinar las yang kuat, sinar ultra violet, infra merah dan percikan api las. Kedok las selain dilengkapi kaca filter, di bagian luarnya dipasang kaca bening untuk melindungi kaca filter. Apabila kaca bening ini sudah kotor, maka kaca tersebut dapat diganti. Penggunaan kedok las ada dua macam yaitu : dengan cara dipegang tangan dan ada yang dipasang langsung pada kepala. Ukuran kca filter dipilih berdasarkan kuat sinar las. Contoh : ukuran kaca filter no. 9 untuk kawat las 0 2, no. 10 untuk kawat las 0 2,5, no. 11 untuk kawat las 0 3,2 – 4, no. 12 untuk kawat las 0 4 – 6. 

2. Apron Las Apron las berfungsi untuk melindungi badan dari sinar panas, percikan api dan terak las.
3. Sarung Tangan Sarung tangan dari kulit atau asbes, digunakan untuk melindungi tangan dari sinar panas dan percikan api las.
 4. Kaca Mata Bening Kaca mata bening digunakan untuk melindungi mata dari percikan api dan terak las pada waktu membersihkan kalur las. 
5. Masker Las Digunakan untuk melindungi pernapasan dari debu dan asap las. 
6. Sepatu Las Sepatu las berguna untuk melindungi kaki dari semburan bunga api las. Bila tidak ada sepatu las, dapat digunakan sepatu biasa yang tertutup seluruhnya.
7. Kamar Las Kamar las dimaksudkan untuk menjaga agar cahaya las tidak mengganggu orang yang ada disekitarnya, maka kamar las harus dibuat dari bahan yang tahan api. Tiap kamar las dilengkapi dengan ventilasi dan meja las. Di dalam kamar las, harus dihindarkan dari bahan-bahan yang mudah terbakar karena percikan, terak dan bunga api

C. ELEKTRODA Elektroda selain berfungsi sebagai logam kontak dan pembangkit busur , juga sebagai bahan pengisi. Elektroda dibuat dengan bermacam-macam ukuran dan jenis sesuai dengan kebutuhan pengelasan atau bahan yang akan dilas. Untuk mengelas jenis las busur tangan, elektroda yang dipakai adalah elektroda bersalut. Tebal salutan elektroda antara 10 % sampai 50 % dari garis tengah elektroda. Salutan elektroda pada waktu mengelas akan turut mencair dan menghasilkan gas CO2 yang melindungi busur listrik dan cairan logam las dari oksidasi udara luar. Adapun terak akan melindungi cairan logam las dari oksidasi udara luar selama proses pendinginan. Fungsi salutan elektroda ialah: 
1. Memudahkan penyalaan. 
2. Memelihara busur tetap nyala. 
3. Menjadi gas pelindung cairan logam las dari oksidasi udara luar.
 4. Menjadi terak yang melindungi jalur las selama proses pendinginan. 
5. Sebagai pengganti unsur yang hilang akibat panas las.
 6. Membersihkan kotoran pada bagian yang di las. 
7. Memelihara jalur las. Supaya menghasilakan rigi-rigi las yang bagus, pemilihan diameter elektode harus disesuaikan dengan tebal metal yang dilas dan kuat arus(ampere) yang digunakan, berikut ini rekomendasi besarnya diameter,kuat arus dan tebal pelat. 

1. Penyalaan Ada dua cara menyalakan busur api las, yaitu : 

1. Sistem Sentuh Caranya dekatkan ujung elektroda ke benda kerja setinggi 20 mm, kemudian turunkan elektroda perlahanlahan sampai ujung elektroda menyentuh benda kerja. Kemudian angkat lagi ke atas setinggi kurang lebih 10 mm (busur las tidak mati) atur busur nyala api (arc length) secukupnya dan selanjutnya mulai pengelasan. Pada saat elektroda menyentuh benda kerja akan terjadi api yang ditimbulkan dari hubungan singkat. 

2. Sistem Gores Untuk menyalakan busur las dengan sistem gores, caranya : Dekat-kan ujung elektroda diatas benda kerja setinggi 20 mm lalu goreskan dari muka ke belakang ujung elektroda menyentuh benda kerja akan terjadi api akibat hubungan singkat. Angkat elektroda ke atas sehingga 10 mm dan gerakkan elektroda pada tempat dimana akan mulai mengelas. Kemudian turunkan sampai ujung elektroda mendekati benda kerja (arc length) antara 0,5 
sampai 1 kali besar elektroda kemudian tarik ke belakang maka terjadilah jalur las. Gerakan Elektrode Las Listrik Cara menggerakkan elektroda banyak sekali macamnya. Semua cara tersebut tujuannya sama yaitu untuk mendapatkan urutan manik las pada sambungan agar merata, halus, serta menghindari terjadinya takikan dan kubangan terak

SAMBUNGAN (1)

SAMBUNGAN

     Konstruksi Sambungan Penyambungan logam adalah suatu proses yang dilakukan untuk menyambung 2 (dua) bagian logam atau lebih. Penyambungan bagian–bagian logam ini dapat dilakukan dengan berbagai macam metoda sesuai dengan kondisi dan bahan yang digunakan. Setiap metoda penyambungan yang digunakan mempunyai keuntungan tersendiri dari metoda lainnya, sebab metoda penyambungan yang digunakan pada suatu konstruksi sambungan harus disesuaikan dengan kondisi yang ada, hal ini mengingat efisiensi sambungan. Pemilihan metoda penyambungan yang tepat dalam suatu konstruksi sambungan harus dipertimbangkan efisiensi sambungannya, dengan  mempertimbangkan beberapa faktor diantaranya: faktor proses pengerjaan sambungan, kekuatan sambungan, kerapatan sambungan, penggunaan konstruksi sambungan dan faktor ekonomis.
     Proses Pengerjaan Sambungan Proses pengerjaan sambungan yang dimaksud adalah bagaimana pengerjaan konstruksi sambungan itu dilakukan seperti: sambungan untuk konstruksi tangki dari bahan pelat lembaran. Untuk menentukan sambungan yang cocok dengan kondisi tangki ini ada beberapa alternatif persyaratan. Persyaratan yang paling utama adalah tangki ini tidak boleh bocor. Tangki harus tahan terhadap tekanan. Proses penyambungannya hanya dapat dilakukan dari sisi luar dan sebagainya. Jika dipilih sambungan baut dan mur kurang sesuai, sebab sambungan ini kecenderungan untuk bocor besar terjadi. Sambungan lipat akan sulit dilakukan sebab tangki yang dikerjakan cukup besar dan bahannya juga cukup tebal, sehingga akan sulit untuk dilakukan pelipatan.
    Persyaratan yang paling sesuai untuk kondisi tangki ini adalah sambungan las.Sambungan las mempunyai tingkat kerapatan yang baik serta mempunyai kekuatan sambungan yang memadai. Di samping itu segi operasional pengerjaan sambungan konstruksi las lebih sederhana dan relatif murah, maka yang paling mendekati sesuai untuk konstruksi tangki ini adalah sambungan las. Kekuatan Sambungan Contoh pertimbangan penggunaan sambungan ini adalah pembuatan tangki. 
     Dengan persyaratan seperti pada uraian di atas, maka pemilihan metoda penyambungan yang cocok untuk tangki jika ditinjau dari sisi kekuatannnya adalah sambungan las. Sambungan las ini mempunyai tingkat efisiensi kekuatan sambungan yang relatif lebih baik jika dibandingkan dengan sambungan yang lainnya. Kerapatan Sambungan Tangki biasanya digunakan untuk tempat penyimpanan cairan maka pemilihan sambungan yang tahan terhadap kebocoran ini diantaranya adalah sambungan las. Kriteria sambungan las ini merupakan pencairan kedua bagian bahan logam yang akan disambung ditambah dengan bahan tambah untuk mengisi celah sambungan. Pencairan bahan dasar dan bahan tambah ini menjadikan sambungan las lebih rapat dan tahan terhadap kebocoran.

    Penggunaan Konstruksi Sambungan Penggunaan dimana konstruksi sambungan las itu akan digunakan juga merupakan pertimbangan yang tidak dapat diabaikan apalagi jika konstruksi tersebut bersentuhan dengan bahan makanan. Kemungkinan lain jika konstruksi sambungan tersebut digunakan untuk penyimpanan bahan kimia yang sangat mudah bereaksi dengan bahan logam. Untuk konstruksi tangki yang digunakan sebagai bahan tempat penyaluran minyak, maka sambungan las masih sesuai dengan penggunaan konstruksi tangki ini.

       Faktor Ekonomis Faktor ekonomis yang dimaksud dalam pemilihan untuk konstruksi sambungan ini adalah dipertimbangkan berdasarkan biaya keseluruhan dari setiap proses penyambungan. Biaya ini sejalan dengan ketersediaan bahan-bahan, mesin yang digunakan juga transportasi dimana konstruksi tersebut akan di instal. Besar kecilnya konstruksi sambungan dan volume kerja sambungan juga menjadi bahan pertimbangan secara keseluruhan 
Contoh pemilihan metoda yang tepat untuk suatu konstruksi sambumgam dapat dilihat pada perakitan file cabinet. Metoda perakitan file cabinet yang digunakan adalah metoda penyambungan dengan las titik. Pertimbangan pemilihan ini mengingat proses penyambungan dengan las titik ini sedehana, mempunyai kekuatan sambungan yang baik dan hasil penyambungannya tidak menimbulkan cacat pada plat. 

    2. Klasifikasi Sambungan Sambungan merupakan bagian yang banyak terdapat pada konstruksi mesin. Banyak atau sedikitnya sambungan yang terdapat pada suatu konstruksi, tergantung dari komplek atau sederhananya konstruksi tersebut. Makin kompleks konstruksi, makin banyak sambungan yang ada pada konstruksi tersebut. Misal mobil dengan segala kelengkapannya mempunyai sambungan yang jumlahnya ribuan, demikian juga dengan mesin-mesin perkakas misal mesin bubut, mesin frais. Makna sambungan yang difahami dalam bidang pemesinan, tidak jauh berbeda dengan apa yang kita jumpai dalam kehidupan sehari-hari, yaitu menghubungkan antara satu benda dengan lainnya. Sebagaimana yang diketahui, manusia tidak dapat memproduksi sesuatu dalam sekali kerja. 
Hal ini tidak lain karena keterbatasan manusia dalam menjalani prosesnya. Makanya benda yang dibuat manusia umumnya terdiri dari berbagai komponen, yang dibuat melalui proses pengerjaan dan perlakuan yang berbeda. Sehingga untuk dapat merangkainya menjadi sebuah benda utuh, dibutuhkanlah elemen penyambung. Menilik fungsinya, elemen penyambung sudah pasti akan ikut mengalami pembebanan saat benda yang dirangkainya dikenai beban. Ukurannya yang lebih kecil dari elemen yang disambung mengakibatkan beban terkonsentrasi padanya. Efek konsentrasi beban inilah yang harus diantisipasi saat merancang sambungan, karena sudah tentu akan bersifat merusak.

Umumnya sambungan dibuat dengan maksud: 
1. Membentuk konstruksi menurut yang dikehendaki, terutama jika sulit atau kurang ekonomis bila dibentuk dari suatu bahan. 
2. Memudahkan pada waktu pemasangan, pemeliharaan dan penggantian bagian bagian yang rusak. 3. Memungkinkan membentuk konstruksi dari bermacam-macam jenis dan ukuran bahan menurut      kebutuhan 
4. Mendapatkan bagian-bagian yang dapat bergerak, diam, dapat dibuka atau tidak perlu dibuka. 

    Melihat konstruksinya, sambungan dapat dibedakan menjadi dua jenis sambungan yaitu : 

1. Sambungan tetap (permanent joint). Merupakan sambungan yang bersifat tetap, sehingga tidak dapat dilepas selamanya, kecuali dengan merusaknya terlebih dahulu. 
Contohnya : sambungan paku keling (rivet joint) dan sambungan las (welded joint). 
2. Sambungan tidak tetap (semi permanent). Merupakan sambungan yang bersifat sementara, sehingga masih dapat dibongkar- pasang selagi masih dalam kondisi normal. 
Contohnya : sambungan mur-baut / ulir (screwed joint) dan sambungan pasak (keys joint). Sambungan tetap Sambungan Paku Keling Paku keling (rivet) digunakan untuk sambungan tetap antara 2 plat atau lebih misalnya pada tangki dan boiler. Paku keling dalam ukuran yang kecil dapat digunakan untuk menyambung dua komponen yang tidak membutuhkan kekuatan yang besar, misalnya peralatan rumah tangga, furnitur, alat-alat elektronika, dll Sambungan dengan paku keling sangat kuat dan tidak dapat dilepas kembali dan jika dilepas maka akan terjadi kerusakn pada sambungan tersebut. Karena sifatnya yang permanen, maka sambungan paku keling harus dibuat sekuat mungkin untuk menghindari kerusakan atau patah. 
Dari metoda-metoda lain yang digunakan untuk proses penyambungan aluminiun metoda riveting inilah yang sangat sesuai digunakan, dan mempunyai proses pengerjaan yang mudah dilakukan. Dimensi rivet Rivet atau dalam istilah sehari-hari sering disebut paku keling adalah suatu metal pin yang mempunyai kepala dan tangkai rivet. Bentuk dan ukuran dari rivet ini telah dinormalisasikan menurut standar dan kodenya. Pengembangan penggunaan rivet dewasa ini umumnya digunakan untuk pelat-pelat yang sukar dilas dan dipatri dengan ukuran yang relatif kecil. Setiap bentuk kepala rivet ini mempunyai kegunaan tersendiri, masing-masing jenis mempunyai kekhususan dalam penggunaannya.
Paku Tembak (Blind Rivet Spesial) Rivet spesial adalah rivet yang pemasangan kepala bawahnya tidak memungkinkan menggunakan bucking bar. Penggunaan rivet jenis ini dikarenakan terlalu sulit kondisi tempat pemasangan bucking bar pada sisi shop headnya, sehingga sewaktu pembentukan kepala shopnya tidak dapat menggunakan bucking bar. Dari kenyataannya inilah diperlukan rivet spesial yang pemasangan hanya dilakukan pada salah satu sisi saja. Kekuatan rivet spesial ini tidak sepenuhnya diperlukan dan rivet tipe ini lebih ringan beratnya dari rivet-rivet yang lain. Rivet spesial diproduksi oleh pabrik dengan karakteristik tersendiri. Demikian pula untuk pemasangan dan pembongkarannya memerlukan perlatan yang khusus atau spesial. Komposisi rivet spesial ini mengandung 99,45 % aluminium murni, sehingga kekuatannya tidak menjadi faktor utama. Dimensi rivet spesial ini dapat dilihat pada tabel berikut menurut standar diamond brand.
Teknik dan prosedur pemasangan rivet pada konstruksi sambungan meliputi langkah-langkah sebagai berikut : Membuat gambar layout pada pelat yang akan di bor dengan menandai setiap lobang pengeboran menggunakan centerpunch. Mata bor yang digunakan harus tajam sesuai dengan ketentuan sudut mata bor untuk setiap jenis bahan yang akan dibor . Pengeboran komponen-komponen yang dirakit harus dibor dengan posisi tegak lurus terhadap komponen yang akan dirivet. Komponen yang dibor sebaiknya dijepit, untuk menghindari terjadinya pergeseran komponen selama pengeboran. Pengeboran awal dilakukan sebelum pengeboran menurut diameter rivet yang sebenarnya. Pre hole (lobang awal) yang dikerjakan ukurannya lebih kecil daripada diameter rivet Teknik pemasangan rivet. Pemasangan rivet countersink Pemasangan rivet tipe countersink ini dapat dilakukan dengan machine countersink atau dimpling. Pengerjaan dengan mesin countersink umumnya 
digunakan untuk pelat pelat yang tebal. Dan pengerjaan dimpling digunakan pada pelat-pelat yang relatif tipis. Pemasangan rivet dengan mesin countersink. Pembentukan sisi pelat yang akan disambung pada rivet countersink ini dapat digunakan alat pilot countersink atau dengan contersink drill bit. Kedua alat ini dapat dipasang pada mesin bor atau pada bor tangan. Penggunaan alat countersink ini dilakukan setelah pelat yang
Dimpling Pelat-pelat yang tipis penggunaan rivet countersink dapat dilakukan dengan cara dimpling. Penggunaan dimpling ini dapat dilihat pada gambar dibawah ini. Pemasangan rivet spesial Prosedur awal pemasangan rivet spesial ini sama halnya dengan pemasangan rivet lainya. Tetapi pada pemasangan rivet spesial ini menggunakan alat yakni tang penembak rivet (gun rivet). 
Langkah awal pemasangan rivet ini adalah dengan mengebor terlebih dahulu kedua pelat yang akan disambung, Lobang dan penggunaan mata bor disesuaikan dengan diameter rivet yang digunakan. Bersihkan serpihan bekas pengeboran pada pelat.Masukan rivet diantara kedua pelat . Tarik rivet dengan memasukan inti rivet pada penarik yang ada di gun rivet. Penarikan dilakukan dengan menekan tangkai gun secara berulang-ulang sampai inti rivet putus. Jenis jenis kampuh pada pengelingan Kampuh sambungan keling dibuat menurut kebutuhan kekuatan dan kerapatan yang dikehendaki.
a. Kampuh Berimpit Kampuh berimpit dibentuk dengan memperimpitkan kedua pinggir pelat yang disambung, kemudian dikeling. Kampuh berimpit biasanya untuk kekuatan kecil, sedang dan juga untuk sambungan yang hanya memerlukan kerapatan. Jika diperlukan kerapatan, antara kedua pelat diberi bahan perekat, seperti kain rami yang di basahi cat, gasket, dan lain-lain. Kampuh berimpit ada yang dikeling tunggal (gambar 1.1.), dikeling ganda (gambar 1.2.), atau dikeling tiga baris. Diameter paku yang dipilih dengan patokan : d ≈ ඥ5� − 0,4 �� S = tebal pelat (cm) Jarak antar paku t = 3d + 0,5 cm. Jika dikeling 2 atau 3 baris. Jarak antara baris tengah dengan baris a, diambil 2,5 – 3,5 d. Jarak antar baris paku ke pinggir pelat e = భ మ t. 
b. Kampuh Bilah Tunggal Kampuh bilah tunggal (gambar.) dibuat untuk sambungan yang tidak terlalu besar, dalam arah seperti pada gambar. Jika gaya F terlalu besar, dapat menyebabkan lengkung bilah dan merenggangnya sambungan (gambar.). Tebal bilah S1 biasanya 0,6 - 0,8S dan maksimal S1 = S. Seperti halnya kampuh berimpit, kampuh bilah tunggal ada yang dikeling tunggal, dikeling 2 baris atau 3 baris. c. Kampuh Bilah Ganda Kampuh bilah ganda banyak digunakan untuk sambungan yang menghendaki kekuatan dan kerapatan pada tekanan tinggi misalnya smbungan memanjang badan ketel uap. Kampuh bilah ganda (gambar.), seperti halnya kampuh bilah tunggal ada yang dikeling tunggal, dikeling 2 baris atau 3 baris. Macam-macam Penerapan Sambungan Keling a. Sambungan Kuat Sambungan kelingan yang hanya memerlukan kekuatan saja seperti sambungan keling kerangka bangunan, jembatan, blok mesin, dan lain-lain. 
b. Sambungan Kuat dan Rapat Sambungan yang memerlukan kekuatan dan kerapatan seperti sambungan keling ketel uap, tangki-tangki muatan tekanan tinggi, dan dinding kapal. c. Sambungan Rapat Sambungan yang memerlukan kerapatan seperti sambungan keling tangki-tangki zat cair dan bejana tekanan rendah. Menghitung Kekuatan Sambungan Keling Sederhana Menghitung kekuatan sambungan paku keling, maka seluruh pembebanan dianggap bekerja pada paku kelingnya. Untuk kampuh berimpit dilakukan sebagai berikut: Beban sebesar F bekerja pada penampang A atas dasar geseran